Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Einat Tirosh, Rozi Maman and Israel Goldberg*

School of Chemistry, Sackler Faculty of Exact Sciences, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

Correspondence e-mail:
goldberg@chemsg7.tau.ac.il

Key indicators

Single-crystal X-ray study
$T=110 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.090$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tris(biacetyl dihydrazone- $\kappa^{2} N, N^{\prime}$)cadmium(II) bis(perchlorate) at 110 K

The crystal structure of the title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{3}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, has been precisely determined at ca 110 K . The cation is located on a $\overline{3}$ axis and is characterized by an approximate octahedral geometry, with each of the ligands occupying two coordination sites around the metal.

Comment

This structure of a 3:1 complex, (I), of biacetyl dihydrazone with cadmium perchlorate is isomorphous and isometric with that of an analogous zinc complex described in the preceeding paper (Elengoz et al., 2005). It has perfect $\overline{3}$ symmetry, in which three chelating ligands occupy the octahedral coordination sites of the metal ion (Fig. 1), crystallizing in the trigonal space group $P \overline{3} c 1$ with two units of the complex in the unit cell. The imine N atoms of the ligand provide the coordination sites to the central metal ion. The bond lengths observed in the isostructural complexes with cadmium (this study; see Table 1) and Zn (Elengoz et al., 2005), analysed at 110 K, and with Ni (Romanenko et al., 1989) analysed (with lower precision) at room temperature, are compared in Table 2.

(I)

Experimental

Compound (I) was synthesized by reacting stoichiometric amounts of cadmium diperchlorate monohydrate and biacetyl dihydrazone dissolved in hot methanol, followed by slow crystallization.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	Mo $K \alpha$ radiation
$M_{r}=653.78$	Cell parameters from 1745
Trigonal, $P \overline{3} c 1$	reflections
$a=9.5905(7) \AA$	$\theta=2.5-27.0^{\circ}$
$c=15.2874(8) \AA$	$\mu=1.18 \mathrm{~mm}^{-1}$
$V=1217.72(14) \AA^{3}$	$T=110(2) \mathrm{K}$
$Z=2$	Prism, colourless
$D_{x}=1.783 \mathrm{Mg} \mathrm{m}^{-3}$	$0.20 \times 0.15 \times 0.15 \mathrm{~mm}$

Received 7 February 2005 Accepted 10 February 2005 Online 19 February 2005

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.798, T_{\text {max }}=0.843$
8975 measured reflections
810 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.090$
$S=1.08$
810 reflections
56 parameters
H -atom parameters constrained

638 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-10 \rightarrow 10$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0529 P)^{2}\right. \\
&+0.0248 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.013 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.58 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cd} 1-\mathrm{N} 3$	$2.325(2)$	$\mathrm{C} 4-\mathrm{C} 4^{\mathrm{i}}$	$1.489(5)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.375(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.502(4)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.289(3)$		
$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{N} 3$	$154.27(12)$	$\mathrm{N} 33^{\mathrm{iii}}-\mathrm{Cd} 1-\mathrm{N} 3$	$106.63(12)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{N} 3$	$69.82(11)$	$\mathrm{N} 3{ }^{\mathrm{iv}}-\mathrm{Cd} 1-\mathrm{N} 3$	$94.53(7)$
Symmetry codes: (i) $x-y,-y, \frac{1}{2}-z ;$	(ii)	$y, x, \frac{1}{2}-z ;$ (iii) $-x,-x+y, \frac{1}{2}-z ;$ (iv)	
$-x+y,-x, z$.			

Table 2
Comparison of some bond lengths (\AA) in the isostructural Cd, Zn and Ni 1:3 complexes with biacetyldihydrazone.

Bond	$M=\mathrm{Zn}$	$M=\mathrm{Cd}$	$M=\mathrm{Ni}$
$M-\mathrm{N} 3$	$2.158(2)$	$2.325(2)$	$2.060-2.088$
$\mathrm{~N} 2-\mathrm{N} 3$	$1.386(3)$	$1.375(3)$	$1.375-1.388$
N3-C4	$1.281(3)$	$1.289(3)$	$1.278-1.298$
$\mathrm{C} 4-\mathrm{C} 5$	$1.492(3)$	$1.502(4)$	$1.378-1.504$
C4-C4*	$1.502(5)$	$1.489(5)$	$1.473-1.485$

The amine H atoms were located in a difference Fourier map and their displacement parameters were refined as riding in their as-found relative positions, with isotropic displacement parameters. Methyl H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}=0.98 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The methyl group was allowed to rotate about the $\mathrm{C}-\mathrm{CH}_{3}$ bond, while preserving the $\mathrm{C}-\mathrm{H}$ bond distances and tetrahedral geometry.

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Atom Cd 1 lies on a $\overline{3}$ axis and atoms Cl 6 and O 8 lie on a threefold rotation axis. One of the anions has been omitted for clarity.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors are grateful to Dr Goutam Kumar Patra for the synthesis of the biacetyl dihydrazone ligand.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Elengoz, H., Shoshnik, R \& Goldberg, I. (2005). Acta Cryst. E61, m538-m540. Nonius (1999). COLLECT. Nonius B V, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Romanenko, G. V., Podberezskaya, N. V., Myachina, L. T., Larionov, S. V. \& Bakakin, V. V. (1989). J. Struct. Chem. 30, 104-109.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

